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ABSTRACF 

In order to achieve an acceptable production rate at reasonable cost, preparative chromatography must be carried out with 
phase systems in which the kinetics of mass transfers and adsorption-desorption are fast. Accordingly, band protiles in 
overloaded chromatographic columns are best understood by considering the ideal model, while the process itself is most suitably 
modeled using the equilibriumdispersive model. The former model assumes an infinite column efficiency, while the latter lumps 
the contributions of axial dispersion and mass transfer resistances into a single apparent dispersion coefficient. The properties and 
solutions of these models are reviewed. ‘Ihe conditions under which they give satisfactory results are summark&. The excellent 
agreement between the experimental band profiles of the components of binary mixtures and the individual band protiles 
calculated with the equilibrium-dispersive model is demonstrated. The degree of agreement is limited only by the accumcy with 
which the competitive equilibrium isotherms are accounted for. 
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1. INTRODUCTION 

In preparative chromatography, we need to 
produce significant amounts of purified com- 
pounds rather than information as in analytical 
chromatography. As a consequence, we cannot 
decouple simply the thermodynamics of the 
retention mechanism and the kinetics of mass 
transfers in the column. We also cannot consider 
the mixture components separately. We have to 
consider the elution of the whole mixture as a 
single problem and handle all aspects of the 
problem at the same time, including the kinetics 
and thermodynamics of phase equilibria. Thus, 
in the general case, preparative chromatography 
is a most complex phenomenon to model. 

The fundamental approach to this problem, 
then, consists in writing the differential mass 
balance equations for all the mixture compo- 
nents, and considering simultaneously the two 
aspects of the problem: (i) the thermodynamics 
of phase equilibrium, or the distribution of the 
mixture components between the mobile and the 
stationary phases; and (ii) the kinetics of phase 
transfers, i.e., the combined effects of the axial 
dispersion, the mass transfer resistances (includ- 
ing the external fluid film resistance and the 
intraparticle diffusion) and the finite kinetics of 
the adsorption-desorption. 

We have just summarized the features of the 
general rate model of chromatography. An ana- 
lytical solution of this model is available in linear 
chromatography [l]. This is possible because, if 
we assume a linear isotherm, the problem re- 
duces to that of a single component, and the 
mass balance equation simplifies considerably. In 
preparative chromatography, extreme complexi- 

ty arises, as noted above, from (i) the non- 
linearity of isotherms, (ii) the coupling of the 
mass balance equations of the different com- 
ponents due to the dependence of the equilib- 
rium isotherm of each component on the mobile 
phase concentration of the other components, 
(iii) the coupling of the kinetics of mass transfers 
of the different components due to the influence 
of each on the mass transfer kinetics of all the 
others and (iv) the coupling between the thermo- 
dynamic and the kinetic effects. As a result of 
this complexity, a solution of the general rate 
model with non-linear isotherms can be achieved 
only by the use of a numerical method [2,3]. 
Such a solution is complex and requires sophisti- 
cated programming and long CPU times. Fur- 
ther, it requires the availability of a large 
number of coefficients which are often difficult to 
estimate and almost impossible to measure in- 
dependently of the chromatographic process. 
Fortunately, it appears that all the information 
required for the development and/or the study 
of the chromatographic process for preparative 
applications on an industrial scale can be ob- 
tained in most instances with simpler models. 

A considerable simplification of the model 
with negligible loss of accuracy can be achieved 
by making some simple assumptions. Two much 
simpler models are available. In the ideal model, 
we neglect the influence of the mass transfer 
resistances, and assume plug flow (i.e., neglect 
the axial dispersion). The ideal model gives the 
output response of a column having an infinite 
efficiency. Thus, this model tells us what the 
thermodynamics of phase equilibria tries to ac- 
complish, and what it permits. In the equilib- 
rium-dispersive model, we still assume constant 
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equilibrium between the mobile and the station- 
ary phases, but we lump the finite rate of mass 
transfer and the axial dispersion into an apparent 
axial dispersion coefficient. This last model gives 
results that are in nearly perfect agreement with 
experimental results. The reasons for this are (i) 
the overwhelming influence of the thermody- 
namics of equilibrium on the band protiles at 
high concentrations, making the influence of 
kinetics a mere correction, and (ii) the availabili- 
ty of stationary phases that afford fast kinetics of 
mass transfer and adsorption-desorption. 

Accordingly, this review will deal only with 
the ideal and the equilibrium-dispersive models 
of chromatography. We present these models, 
describe their main features and properties, 
discuss their solutions and discuss the degree of 
agreement with experimental results. 

2. THE IDEAL MODEL 

In the ideal model, we ignore the axial disper- 
sion and the kinetics of mass transfer. Thus, the 
column efficiency is assumed to be infinite. The 
ideal model has been developed by Wilson [4]. 
Important contributions to its solutions have 
been made by DeVault [5], Offord and Weiss [6], 
Glueckauf [7,8], Rhee et al. [9], Helfferich and 
Klein [lo], Guiochon and Jacob [ll] and Gol- 
shan-Shirazi and Guiochon [12,13]. 

The differential mass balance equation for 
each component can be written as [4] 

ac, ac, u.,+,+F.$=O 
where Ci and q,. are the concentrations of com- 
ponent i in the mobile and the stationary phases, 
respectively, z and t are the position and time, 
respectively, u is the mobile phase linear ve- 
locity, F= us/u, = (1- E)/E is the phase ratio 
and E is the total porosity of the packed column; 
qi and C, are related through the equilibrium 
isotherm: 

4j =f(‘i, ‘2, . . * 9 ciP * - * 3 cn) (2) 

As noted above, it is the non-linear behavior of 
the isotherm which plays the major role in 
shaping the elution profile. This justifies the use 
of the ideal model and explains why it gives a 

good caricature of what is happening during the 
migration of the component bands, and how the 
final chromatogram is evolving. 

Finally, to solve a partial differential equation, 
we need initial and boundary conditions. In 
overloaded elution, the column is empty of 
sample at the beginning of the experiment, and 
in equilibrium with the pure mobile phase. The 
initial condition is given by 

C,(O, 2) = 0 (3) 

We assume that the sample is introduced into the 
column as a pulse injection. The corresponding 
boundary condition is 

C&, 0) = ci,O 0 < t 6 t, (4a) 

Ci(t, 0) = 0 t > t, (4b) 

We describe first the main feature of the ideal 
model before giving its general solution. 

2.1. Solution of the ideal model for a single 
component 

Eqn. 1 can be rewritten as 

$+ 
U ac .-= 

dq a2 O (5) 
l+F.= 

This equation shows that a velocity can be 
associated with each concentration. This velocity 
is given by 

U 
uz= 

dq 
(6) 

l+F.z 

If we have a convex upwards isotherm, the 
concentration in the stationary phase at equilib- 
rium increases less rapidly than the concentra- 
tion in the mobile phase, d2qldC2 < 0, and the 
velocity associated with a concentration C in- 
creases with increasing concentration. The real 
or diffuse boundary of the elution profile spreads 
progressively, as the band maximum moves 
faster than the limit point at infinite dilution. 
This point, the last one of the band profile, 
moves at the velocity u = u,/(l + k;) observed 
under analytical conditions (with k; = Fu, where 
a is the slope of the isotherm at the origin). 
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In the front of the band we have a problem, 
however, which arises from the fact that as the 
high concentrations move faster than the low 
concentrations, the band maximum tries to pass 
the band beginning, at C = 0. This is impossible, 
and it can be shown that all the concentrations 
will pile up at the same time. One of the 
properties of eqn. 1 is its ability to propagate 
concentration discontinuities or shocks. The 
shock velocity is given by 

(7) 

where Aq and AC are the differences between 
the concentrations at the front and the rear of 
the shock in the mobile and the stationary phase, 
respectively. 

2.2. General solution of the ideal model for a 
single component 

It results from eqn. 6 that the diffise boundary 
of a convex upwards isotherm is given by 

t(C)=t,+;(l+F.$) 

where t(C) is the retention time of the concen- 
tration C at the end of a column of length L. If 
the isotherm is convex upwards, t(C) increases 
with decreasing C, and the diffuse boundary is a 
rear profile. The converse is true for a convex 
downward isotherm. 

In the case of a single component, for any 
isotherm which has no inflection point, the 
retention time of the concentration discontinuity 
with the initial and boundary conditions of eqns. 
3 and 4 is given by [8,13] 

n 
4(C&CM.$$ _ =- 

C-CM FM 
(9) 

where n is the amount of compound injected 
(number of moles), F, is the volume flow-rate of 
the mobile phase and t, is the column hold-up 
time. Depending on the isotherm equation, it is 
possible to derive an analytical or a numerical 
solution of eqn. 9. 

2.3. Case of the Langmuir isotherm 

The equation of the Langmuir isotherm is 

aC 
q= l+bC (10) 

where a and b are numerical coefficients. This 
isotherm is convex upwards. The elution profile 
[13,14] begins with a shock at 

tR = t, + tO + @R,O - tO)(1-fi)2 (11) 

where t, o , is the retention time under analytical 
(e.g., linear) conditions: 

t,,, = to( 1 + Fa) = to( 1 + k;) (12) 

and L, is the loading factor, or ratio of the 
sample size and the column saturation capacity: 

nb 
L,=p l SLk;, (13) 

At the top of the shock begins the rear, diffuse 
boundary with an equation 

tR,O - tO 

t - t, - to 
-1 1 (14) 

The maximum concentration, at the top of the 
shock, is 

VG 
‘,= b(l-j&) 

(15) 

The band ends at 

tR(") =', +tR,O (16) 

These equations define entirely the solution. We 
note that the profile (eqn. 14) can be normalized 
by using as reduced coordinates k’ = (t - t, - to)/ 

@R,O - to) and bC. 

2.4. Case of the biLangmuir isotherm 

The biLangmuir isotherm equation is 

a,C %C 
q= l+b,C+ l+b,C (17) 

This equation corresponds to a heterogeneous 
surface, paved with two different types of sites, 
and can be used, for example, for polar com- 
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pounds on chemically bonded reversed phases. 
In this case, the solution [13] is made of a diffuse 
rear boundary given by 

tR(C) = 2, + f, + Ft, 

a,( 1+ b,C)* + a*( 1+ b,C)* 

[1+ (b, + b,)C + b,b,C*]* (18) 

This bands ends at 

fR(0) = rp + t,[l + F(u, + a,)] (19) 

and starts at a time which can be calculated by 
numerical solution of the algebraic equation 

+t,Cdt =+ 
Y 

using eqn. 18, which relates C and f. 

2.5. Comparison with experimental results 

As we have assumed an infinitely efficient 
column, we could expect poor agreement be- 
tween the band profiles just calculated and those 
recorded in experiments performed with high- 
concentration bands of pure compounds. How- 
ever, when the adsorption behavior of these 
compounds is described accurately by a known 
isotherm, the experiment band profiles agree 
well with those derived from eqns. 8 and 9. The 
reason for such good agreement is that thermo- 
dynamics play the major role in shaping the band 
profile at high concentrations. 

For example, Fig. 1 shows the experimental 
profiles recorded with phenol on a C,, chemical- 
ly bonded column, and the profiles calculated 
with the ideal model for column loadings increas- 
ing from 2 to 11% [15]. In Fig. 2, we compare 
the profiles of bands of benzyl alcohol in normal- 
phase chromatography, for values of the column 
loading factor increasing from 0.15 to 6%. In all 
instances, the actual band fronts are not truly 
vertical as predicted. They are very steep, how- 
ever, and the difference in the front slope from 
vertical is really significant only for the smallest 
peak. It becomes truly negligible for the largest 
peaks. The rear part of the profile of the actual 
band is more strongly curved than the predicted 
profile and it tails longer. The influences of the 

5 Il.0 1l.s l2.0 12.9 13.0 13.9 l4.0 la.9 

nhfc (mid 

Fig. 1. Comparison of the experimental band profiles and the 
profiles calculated with the ideal model for phenol on C,,- 
bonded silica,, eluted with methanol-water (20:80). Flow- 
rate, 1 mllmin. Sample loading factors (size in mmol); 2.1 
(O.OlS), 4.3 (0.03), 6.4 (0.045), 8.5 (0.06) and 10.7% 
(0.075). From ref. 15 (0 American Chemical Society). 

axial dispersion and the finite rate of the mass 
transfers in the column, which we have neg- 
lected, easily explain these differences. An ex- 
perimental band profile may have steep front 
and a tailing rear. It cannot have a vertical front. 
The concentration gradient would be infinite and 
generate an infinite mass flux. The solutes cannot 
diffuse instantaneously to the core of the packing 
particles. 

3. MULTI-COMPONENT IDEAL 

CHROMATOGRAPHY 

Glueckauf [7] was the first to give a solution of 
the ideal model of chromatography for over- 
loaded elution and displacement chromatograpy, 
in the case of a binary mixture of compounds 
following the competitive Langmuir isotherm 
model. A comprehensive theoretical study of the 
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Fig. 2. Comparison of the experimental band profiles and the 
profiles calculated with the ideal model for benzyl alcohol on 
silica, eluted with THF-n-heptane (15:85). Flow-rate, 1 ml/ 
min. Sample loading factor (sample size in mmol): 0.47 
(0.00625), 0.95 (0.0125), 1.9 (0.025), 3.8 (O.OSO), 4.6 (0.060) 
and 5.7% (0.075). From ref. 15 (0 American Chemical 
Society). 

multi-component problem in ideal chromatog- 
raphy was given by Rhee et al. [9]. They de- 
veloped the simple waves and the shock waves 
theories, illustrated their results by analyzing 
wave interactions and constructed the solutions. 
Their theory can be applied to the solution of 
problems of frontal analysis, overloaded elution 
and displacement chromatography. Helfferich 
and Klein [lo] made another theoretical analysis 
of multi-component ion-exchange chromatog- 
raphy using the ideal model and employing the 
h-transform and the concept of coherence. This 
theory is mainly applied in displacement chroma- 
tography, although it can be used also in over- 
loaded elution [10,X]. None of these papers 
contain a detailed description of the analytical 
solution and a simple calculation procedure to 
derive it from given values of the isotherm 

parameters. These data were given with a solu- 
tion of the problem of the overloaded elution of 
two compounds, assuming the ideal model and 
competitive Langmuir isotherms [ 12,161. This 
solution can be derived using either the method 
of characteristics [17] or the h-transform [lo]. 

3.1. General properties of the equation system 
for two components with competitive Langmuir 
kotherms 

In the case of a binary mixture, we need to 
write two differential mass balance equations, 
one for each compound: 

G aql ac, 
at+F.at+U.~=O 

ac2 aq2 ac, 
-+F.-L$+U’~=O at 

(214 

@lb) 

The competitive Langmuir isotherms of the two 
components are given by 

4s,lhCl 
q1 = 1+ b,C, + b2C2 

qs,2b2C2 
q2 = 1+ b,C, + b2C2 

(224 

Pb) 

In the case of a binary mixture, there are two 
sets of equations describing the velocities associ- 
ated with the concentrations C, and C, and the 
shock velocities, respectively. These equations 
are similar to eqns. 6 and 7 for a single com- 
ponent , respectively. The velocity associated 
with given concentrations of the two compounds 
on a diffise boundary of the individual profiles is 
given by 

UO 
U 2.1 

= 

ml 
1+-C 

UO 
u 22 

= 

m2 
l+F*DC, 

where the term Dq,lDC, is given by 

ml a41 
DC,=ac,+ 

dG aql -- 
dC, ac, 

(234 

Pa) 
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RI2 aq2 dG a42 -- oc,=ac,+ dC2 ac, (24b) 

The velocities of the concentration shocks of the 
two components are 

C-4 

C=b) 

The most important property of the directional 
differentials given in eqns. 24a and 24b is that 
they are equal (coherence condition). Thus, the 
velocities u, , and u,,~ associated with the two 
components ‘in the continuous parts of the pro- 
files are also equal: 

u 2.1 
=u =u 2,2 z 

This relationship, which was first suggested by 
Offord and Weiss [6], is necessary to obtain the 
analytical solution of the system of eqns. 21. The 
coherence condition of Helfferich [lo] is a con- 
cept equivalent to this relationship. 

Using eqns. 23a, 23b, 24a and 24b, and letting 
r = dC,ldC,, one can derive from eqn. 26 that 

a42*r2+ aq2 a4, aql -_- 
ac, ( ac, ac, > 

r--=(-J 
ac, (27) 

For Langmuir competitive isotherms, we can 
calculate the derivatives of eqns. 22a and 22b, 
insert these values into eqn. 27 and, letting (r = 
a,la, = k;lk:, we obtain the equation: 

&,C,r2 - ((Y - 1+ c&,C, - b2C2)r - b,C, = 0 

(28) 

As long as the plateau concentration of the wide 
rectangular injection pulse has not eroded away 
completely, we have C, = Cy and C, = Ci in 
eqn. 28. This equation becomes in this instance 

cyb,C;r2 - ((Y - 1 + ab,C; - b,C;)r - b,C; = 0 

(2% 

Using the equations just discussed, it is pos- 
sible to derive the analytical solution of the 
system of eqns. 21 in the case of Langmuir 

competitive isotherms. This solution consists of 
three zones. The first zone contains only the first 
(or less retained component), the second (or 
mixed) zone contains both components and the 
third zone contains only the second (or more 
retained component), as illustrated in Fig. 3a 
and b. 

Fig. 3a shows a typical solution of the two- 
component problem in a case where complete 
resolution is not achieved. Fig. 3b shows the 
hodograph transform of the solution in Fig. 3a. 
This transform is obtained by plotting the con- 
centration of the first component, C,, versus that 
of the second component, C,, at the same time 
during the elution of the band. It can be shown 
that this plot gives two lines, one for the band 
front and the other for the rear, and that these 
two lines are straight in the case of competitive 
Langmuir isotherms. 

In the case of a wide rectangular injection, 
wide enough for part of the injection plateau to 
elute without being eroded away, the roots of 
eqn. 29 are the slopes of the two lines in the 
hodograph plane emanating from the point rep- 
resenting the composition of the feed injection 
(Cy, Ci, point F in Fig. 3b). The positive root is 
the slope of the straight line corresponding to the 
pathway of the continuous part of the profiles in 
the mixed zone. The negative root corresponds 
to the shock between the first and second 
(mixed) zones. 

3.2. Rear diffuse boundaries of the elution 
profiles in the case of a wide injection 

The solution is particularly simple, because we 
have a constant state, corresponding to what is 
left of the injection plateau, and a simple wave 
solution. The straight line with a positive slope in 
Fig. 3b intersects the C, axis at point B, with the 
concentration 

c:=c;_$ (3% 

The value of the second term in the right-hand 
side of eqn. 30a can be obtained from 29: 

(Y-1 
cub,r, + b, Gob) 
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a 

b 

-t 
0.0 2 

Fig. 3. Solution of the ideal model for a wide rectangular 
pulse injection of a 1:l mixture. (a) Elution profile of a wide 
rectangular injection, showing the various characteristic 
points of the solution (see equations in text). The solid line 
gives the band profile of the first component and the dotted 
line that of the second component. (b) Hodograph transform 
of the profiles in (a). 

The concentrations C, and C, in the mixed zone 
are not independent, but are related according to 

c, - 2 = ,,ol,-: b 

1 1 2 
(31) 

The velocity associated with a pair of concen- 
trations C, and C, on the continuous parts of the 
profile in the mixed zone can be obtained from 
eqns. 23a and 24a, using the derivatives of the 
isotherm (eqn. 22): 

The combination of eqns. 31 and 32 (considering 
that I = C, + z/u,) gives the continuous part of 
the band profiles of the two components in the 
mixed zone [ 121: 

cl = b, + b~i(ar,) [f 

Y 4,l -to _ 1 
a’t--l,-t, I 

with O<C,<C~ (33a) 

c, = l [VC-l] b, + ab,r, 

with O<C,<Ci (33b) 

where, to simplify the writing of these equations, 
we have let y = (&,r, - b,)l(b,r, + b2). We can 
obtain the time when the mixed zone ends by 
inserting C, = 0 into eqn. 33a or C, = C, into 
eqn. 33b: 

t, = t, + to + 5 (4.1 - to) = t, + to 1 + ( $5) 

(34) 

The continuous part of the band profile in the 
third zone of the chromatogram (where the 
second component is pure), corresponding to the 
region OB in Fig. 3b, is obtained from eqn. 14: 

c2=+ 
[\i 

4,2 - to 

t - t, - to 
-1 

2 1 
The time when the concentration of the second 
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component in the third zone reaches CF is given 

bY 

(36) 

By comparing eqns. 34 and 36, and since y is 
always greater than 1, we find that t, is always 
shorter than t,, so a plateau with a constant 
concentration equal to CF appears at the begin- 
ning of the third zone, or elution zone of the 
pure component 2. The length of this plateau is 
given by 

YF% 
At=t,-t,=--(y-l)& (37) 

In the case of a wide rectangular band, the time 
when the injection plateau ends and the rear 
diffuse boundaries of both component profiles 
begin can be obtained by inserting C, = Cy in 
eqn. 33a or C, = Ci in eqn. 33b. We obtain 

[ 
Fa2 

tF = cp + to l+ y(1+ b,C’: + b2Q2 I (38) 

3.3. Front shocks in the case of a wide injection 

The negative root of eqn. 29 is the slope of the 
line that represents the second shock of the 
profile, between the first and second zones. This 
line intersects the C, axis at point A, with the 
concentration 

ct = c; - r*c; (39) 

Hence, immediately after the injection begins, 
two shocks are formed in the band front. The 
first shock is- at the front of the first component 
band. According to eqn. 25a, its velocity is 

u 
U 

s,OA = 

l+F. ‘* 
(W 

1+ b,C? 

A second shock is formed between the first and 
second zones, at the front of the second com- 
ponent band. Its velocity is given by eqn. 25b: 

u = 
U 

S,FA 
a2 

(41) 
l+F. 

1+ b,CY + f?,c; 

The first zone, located between these two 
shocks, contains only the pure first component. 
As long as the plateau of the injected pulse 
corresponding to point F in the Fig. 3b has not 
been eroded away, the velocities of these two 
shocks remain constant. Then, it is easy to derive 
the analytical solution giving their retention 
times from their constant velocities, in eqns. 40 
and 41. Considering that t,,, = r/US,,k and 

have at the column end 
h.2 = z/U,,,, [12], we 
(z=L) 

fR,l 

Fa* 
1+ b,C; > (42) 

t,,, =t, 1+ 
Fa2 

1 + b,C; + b,C; > 

3.4. Case of a narrow rectangular injection 
pulse 

A narrow injection pulse is defined as a 
rectangular injection pulse for which the injec- 
tion plateau is eroded and disappears at an 
intermediate stage of the migration. The injec- 
tion plateau disappears just when the band is 
eluted if 

tR,2 = tF (4.3 

where tk 2 is given by eqn. 43 and t, by eqn. 38. 
If t,,, < iF, we have a “wide” injection band, and 
a plateau at the injection concentration is part of 
the elution profile. In contrast, if t,,, > t,, we 
have a “narrow” injection band and the plateau 
erodes and disappears. When this happens, the 
shock velocities no longer remain constant. They 
depend on the differences between the com- 
ponent concentrations on both sides of the 
shock, and these concentrations decrease. 

Nevertheless, an analysis of the interactions 
between simple waves and shock waves permits 
the derivation of the analytical solution (i) for 
the retention time of the second shock, (ii) for 
the continuous band profiles of the first com- 
ponent between the two shocks and after the 
second shock and (iii) for the continuous band 
profiles of the second component after the sec- 
ond shock. However, the retention time of the 
first component can be obtained only by the 
numerical integration of the area of the first 
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component band profile, which must remain 
equal to the injected area of that component 

WI. 
Table 1 gives a summary of the analytical 

results corresponding to the different zones. 

3.5. Comparison between the profiles predicted 
by the ideal modei for a binary mixture and 
experimental results 

No detailed comparisons made in this case are 
available. However, systematic comparisons 
have been made between. the band profiles 
calculated with the ideal and the equilibrium- 
dispersive model (see next section). As this later 
model compares extremely well with the ex- 
perimental results, this study answers the ques- 
tion. At high loading factors, there is a small 
difference between the experimental profiles and 
those predicted by the ideal model. As expected, 
and as observed in the single-component case, 
the only significant differences are the erosion of 
the concentration shocks, providing steep but 
not vertical concentration fronts, and in the rear 
plateau on the second component band, at the 
beginning of the third zone. Unless the concen- 
tration of the first component far exceeds that of 
the second, this plateau is eroded, and only an 
inflection point can be seen. 

4. EQUILIBRIUM-DISPERSIVE MODEL OF 
CHROMATOGRAPHY 

The ideal model of chromatography, which 
assumes a column with infinite efficiency, gives a 
reasonable caricature of the elution profiles 
when the column efficiency and the loading 
factor are high. An analytical solution is ob- 
tained in the case of the competitive Langmuir 
model only for a binary mixture. However, we 
have seen that kinetic effects smooth the band 
profiles obtained with real columns. The shocks 
are replaced by steep boundaries with a finite 
thickness, i.e., by shock layers, plateaux are 
eroded and the band profiles end later than 
predicted by the ideal model. Further, in many 
instances, the competitive Langmuir model is 
inapplicable. 

A more realistic model should include the 

effects of a finite column efficiency, i.e., should 
take into account the contributions of the axial 
dispersion and the mass transfer resistances. In 
the equilibrium-dispersive model of chromatog- 
raphy, we assume that the components are in 
constant equilibrium between the mobile and the 
stationary phases and that all the contributions 
to band broadening can be lumped into a single 
apparent dispersion coefficient. Hence the mass 
balance equation in this model is given by 

aci ac, Ni a=C. 
u.-g+at+F*at=D a,i ‘2 i=l,n 

(454 
where D,,i is an apparent dispersion coefficient 
related to the column HETP. For a single com- 
ponent, we have 

We have shown [l] that, in linear chromatog- 
raphy, all the kinetic models used to account for 
the various kinetic phenomena involved in a 
chromatographic column give the same results, 
equivalent to the Gaussian band profile pre- 
dicted by the plate theory, even when the ef- 
ficiency is as low as 100 theoretical plates. The 
models studied include (i) the general rate 
model, (ii) the pore model, (iii) the linear 
driving force model and (iv) the equilibrium 
dispersive model [ 11. In linear chromatography, 
the variances of the contributions of the various 
sources of band broadening are additive [18] and 
the models give the same results. Thus, the 
equilibrium-dispersive model gives the exact 
solution for the band profile. However, we are 
interested here in the problem of overloaded 
elution and the variances of shift-variant contri- 
butions are no longer additive [ 191. 

4.1. Reduction of the kinetic models to the 
equilibrium-dtipersive model 

Rhee and Amundson [20] have discussed the 
additivity of the contributions due to axial dis- 
persion and to the mass transfer kinetics in non- 
linear chromatography. They have also studied 
the properties of shock layers in the case of a 
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TABLE 1 

EQUATIONS DESCRIBING THE SOLUTION OF THE IDEAL MODEL FOR TWO COMPONENTS WITH LANGMUIR 
COMPETITIVE ISOTHERMS AND A NARROW RECTANGULAR PULSE INJECTION 

First zone: pure first component 
Retention time of the first component: this retention time cannot be calculated in closed form. It is obtained as the lower 

boundary of the finite integral of the two profiles of the 6rst component (in the first and second zones), such that this integral be 
equal to the area of the injected profile, i.e., corresponds to the mass of first component injected. 

Concentration profile of the first component: 

t=t,+t,+(ty-to) 
1 a-l 1 .-. 

(l+b,C,)Z-Lf*Z a [(a-l)/a+b,C,]* 

Concentration of the first component on the front side of the second shock: 

where L,,, is the loading factor for the second component: 

nb b&t, L,,, =L=- 
l SLk;O t;,* - t, 

Mixed zone 
Retention time of the second shock: 

t R.2 = t, + t,[l + Fa,y( 1 - *)‘I 

Concentration of the first component on the rear side of the second shock: 

cy= r1 
1--a+afi 

b, + ab,r, * 1-G 

Concentration of the second component at the top of the second shock: 

cy= 
1 .fl 

b,+ob,r, 1-c 

Elution profile of the first component: 

1 
c, = 

b, + b&r,) 

Elution profile of the second component: 

c, = 
b, +‘,b,r, (fa-‘) 

Time the mixed zone ends: 

Concentration of the second component at the end of the rnized zone: 

c;= a-1 
ab,r, + b, 

(Continued on p. 160) 
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Third zone: pure second component 
Duration of the second component plateau: 

Time when the diffuse profile of the second component begins: 

Diffuse profile of the pure second component: 

C+$(~~-lj 

End of the elution profile: 

t=t,+t;,= t, + t,( 1 + Fa,) 

breakthrough curve (frontal analysis), and used 
in their model a differentia mass balance equa- 
tion: 

a2c ?g+F.$++D,._ 
at2 (46) 

where D, is the axial dispersion coefficient, and 
the solid film driving force model as the kinetic 
equation 

They have shown that with this model, and in 
the case of a breakthrough curve, the contribu- 
tions of axial dispersion and of the mass transfer 
resistances are additive. There is an additional, 
second-order coupling term between the axial 
dispersion and the mass transfer resistance, but 
this coupling term is very small in most instances 
and can be ignored. However, unlike in linear 
chromatography, this additivity is concentration 
dependent and given by 

24 H=_ 

U (48) 

where H is the height equivalent to a theoretical 
plate, k is the slope of the isotherm chord, 
k = F(AqlAC) and k, is the lumped mass trans- 
fer coefficient, related to the film mass transfer 
coefficient, k,, and the pore diffusion coefficient, 
D, [21]. Eqn. 48 is very important. It proves 

that, at least in the case of frontal analysis and 
assuming the solid film linear driving force kinet- 
ics, the contribution of axial dispersion and mass 
transfer resistances are additive, as in linear 
chromatography. However, as k is concentration 
dependent, eqn. 48 shows that, in contrast to 
linear chromatography, the apparent dispersion 
coefficient in non-linear chromatography is con- 
centration dependent. In linear chromatography, 
k = kh, and eqn. 48 reduces to the Van Deemter 
equation [22]: 

H= (49) 

Eqn. 48 was derived for frontal analysis. In 
overloaded elution, we cannot apply either the 
equation derived for linear chromatography 
(eqn. 49) or that derived for frontal analysis 
(eqn. 48). We are of the opinion that, in over- 
loaded elution, k should be replaced in eqn. 48 
by the slope of the isotherm, k = F(dqldc) = 
kh /( 1 + NT)‘. Hence the situation in overloaded 
elution is more complicated than in the two 
previous cases since C, and hence k, vary along 
the elution band profile. We shall assume that D, 
is independent of the concentration and that its 
value remains the same as obtained in linear 
chromatography. This is the essential approxi- 
mation made when applying the equilibrium- 
dispersive model in non-linear chromatography. 
This approximation is an excellent one, as long 
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as the column efficiency is not very low (i.e., components in the stationary phase at equilib- 
exceeds a few hundred plates) [23]. rium with the mobile phase. 

4.2. Initial and boundary conditions 4.3.1. Single-component isotherms 

In order to solve eqn. 44, we need appropriate 
initial and boundary conditions. In overloaded 
elution, the initial condition is a column empty 
of the mixture components: 

C,(x, 0) = 0 (5oa) 

The boundary condition is the injection of a 
rectangular pulse of duration t,: 

Ci(O,t)=cp O<tat, (sob) 

(q(O,t)=O t>t, (504 

The equilibrium-dispersive model can be used 
very conveniently for the study of other modes 
of chromatography, such as frontal analysis, 
displacement and gradient elution. It suffices to 
select the appropriate initial and boundary con- 
ditions which translate the experimental modes 
of operation of chromatography into mathemati- 
cal conditions. 

In the case of single components, the isotherm 
can be measured by frontal analysis (FA) 
[24,25], by elution by characteristic points (ECP) 
[26], by frontal analysis by characteristic points 
(FACP) [27] and by the retention time method 
(RTM) [15]. In many practical cases, it is ob- 
served that single-component adsorption data 
can be fitted reasonably well to the Langmuir 
isotherm: 

aC 
q= l+bC (51) 

In some cases, the biLangmuir isotherm model 
[28]: 

a,C a& 
q= l+b,C+ l+b,C (52) 

4.3. Adsorption isotherms 

In order to solve eqn. 45a, we need the 
following parameters, characterizing the column 
design, column length, L, and cross-sectional 
area, and the column operating conditions, 
mobile phase flow-rate, F,, and column dead 
volume. We also need the dispersion coeffi- 
cients, D,,i and the equilibrium isotherms, 
&C,, . . . ) ci, . . .). D, can be calculated from 
eqn. 45b if we know the column HETP in linear 
chromatography. It is determined by measuring 
the variance of the Gaussian band profile ob- 
tained by injecting a very small amount of the 
compound of interest. However, the value of D, 
obtained from eqn. 45b is valid for linear chro- 
matography. As discussed above, we use the 
same value in the non-linear case. This is the 
approximation that permits the use of the 
equilibrium-dispersive model. 

allows a considerable improvement of the fitting 
of the experimental data. This is the case, for 
example, with enantiomers for which there exist 
at least two distinct types of adsorption sites on a 
chiral stationary phase, the chiral selective sites 
and all the sites with which any kind of non- 
selective interactions can take place [29]. This is 
also the case with adsorption on heterogeneous 
surfaces. This model fits well the experimental 
data in many cases of adsorption of polar com- 
pounds on chemically bonded silica, on which 
unreacted silanols provide sites different from 
the bonded moieties. 

Finally, the quadratic isotherm 

q,W, + ‘WC) 
‘= l+b,C+b,C* 

provides a convenient isotherm to account for 
adsorption data that deviate markedly from the 
Langmuir model, and especially those isotherms 
which exhibit an inflection point. 

4.3.2. Competitive multi-component isotherms 

The last information which is needed is the 
adsorption isotherms qi(C,, . . . , Ci, . . .), i.e., 
the function relating the concentrations of the 

In overloaded chromatography, the feed com- 
ponents compete for access to the stationary 
phase, and as a result we need the competitive 
multi-component isotherms to account for the 
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band profiles in chromatography. The competi- 
tive isotherms can be obtained by one of two 
different approaches, one convenient and the 
other rigorous. We can measure the parameters 
of the single component isotherms of the various 
compounds involved by one of the methods 
mentioned above, and use these parameters in a 
proper multi-component isotherm model. This is 
highly convenient, provided that a suitable 
model is available. Otherwise, we have to mea- 
sure directly the multi-component isotherms by 
frontal analysis of series of multi-component 
mixtures of various composition [30], or by 
recording the band profiles of a wide injection 
plug and applying the simple wave theory [31]. 

The competitive Langmuir isotherm is an 
extension of the single Langmuir isotherm: 

U,C, 
4i = 

1 + 2 biCi 
1 

The biLangmuir competitive isotherm is the sum 
of two competitive Langmuir isotherm terms 
[29]: 

where the subscripts 1 and 2 refer to the adsorp- 
tion sites 1 and 2, respectively. 

The Langmuir competitive isotherm is the 
simplest model available to construct a competi- 
tive isotherm when single-component isotherms 
are available. However, it does not satisfy the 
Gibbs adsorption equation and, consequently, it 
is not consistent with thermodynamics, unless 
the column saturation capacities of the two 
components are the same [32]. This limits its 
usefulness to pairs of closely related isomers, 
e.g., optical isomers [29]. 

In the case when the two single-component 
isotherms are different, the ideal adsorbed solu- 
tion theory (IAS) provides a numerical proce- 
dure to calculate competitive isotherms. This 
method is based on the normalization of the 
spreading pressures [33]. The Levan-Vermeulen 
isotherm [34] is an attempt to correct the com- 
petitive Langmuir isotherm for its inconsistency 

in the case when each component follows a 
Langmuir isotherm, but the two column satura- 
tion capacities are different. By using the IAS 
concept and the Gibbs adsorption equation, 
Levan and Vermeulen [34] derived a binary 
competitive isotherm in the form of a rapidly 
converging expansion series which is easy to 
calculate and apply [35]. The Levan-Vermeulen 
isotherm reduces to the competitive Langmuir 
isotherm when the column saturation capacities 
of the two components are equal. 

4.3.3. Role of the strong solvent in a mixed 
mobile phase 

In principle, when we have a multi-component 
mixture and use as the mobile phase a multi- 
component solution, we have an n-component 
system (where IZ is the total number of mixture 
components and mobile phase constituents). 
Hence we need to write n - 1 mass balance 
equations similar to eqn. 45a, and to solve these 
equations with a proper set of initial and bound- 
ary conditions (different for the mixture com- 
ponents and the mobile phase constituents), and 
using multi-component isotherms. The problem 
could easily acquire extreme complexity. We can 
simplify it greatly, however, because in liquid 
chromatography the absolute isotherm are mean- 
ingless . 

Under certain conditions that we shall discuss 
later, we may assume that none of the con- 
stituents of the mobile phase adsorbs on the 
stationary phase. Using this assumption, we can 
determine the competitive isotherms of the feed 
components in equilibrium between the station- 
ary phase and the solution considered as a pure 
solvent [36,37]. As a result, the mass balance 
equations for the mobile phase constituents can 
be ignored and only the mass balance equations 
for the feed components need to be solved. This 
assumption is valid in reversed-phase chromatog- 
raphy where the mobile phase modifiers are 
polar organic solvents which are weakly ad- 
sorbed by the stationary phase and do not 
compete strongly with the feed components for 
adsorption. In this mode of chromatography the 
organic modifier acts by increasing the mobile 
phase solubility of the feed components. In this 
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mode, this assumption gives excellent results in 
most practical cases [37]. 

The assumption that the mobile phase con- 
stituents do not adsorb on the stationary phase 
fails when the additive is adsorbed nearly as 
strongly as or more strongly than the feed 
components. Then the competition between the 
feed components and the mobile phase additives 
cannot be ignored. In this event, which is not 
infrequent in normal-phase chromatography 
where the mobile phase components control 
retention by competing with the sample com- 
ponents, the mass balance equations of the 
additives should be included in the system of 
mass balance equations to be solved, and the 
competitive isotherms of the components and the 
additives should be determined and used [38,39]. 

4.4. Analytical solution of the equilibrium 
dispersive model of a single component in a 
special case 

There is no analytical solution of the equilib- 
rium dispersive model. Attempts have been 
made to study the band profiles at the onset of 
column overloading, when the isotherm ceases to 
behave linearly and the inlluence of its curvature 
on the band profile begins to show. Houghton 
[40] and Haarhof and Van der Linde [41] have 
discussed this problem. An approximate solution 
is available, which replaces the isotherm by the 
first two terms of its Taylor expansion around 
the origin, i.e.,. for a parabolic isotherm. It is 
valid for a moderate degree of column overload- 
ing. 

If we assume that the isotherm can be written 
as 

q = aC(l - bC) (56) 

Then the solution obtained is [41] 

X = 

exp(-r*/2) 

G[coth(m) + erf(rfi)] 

where 

(57) 

f 

The loading factor is defined as the ratio of the 
sample amount to the amount needed to saturate 
the column, an implicit reference to the Lang- 
muir isotherm for which eqn. 56 is the two-term 
Taylor expansion. The loading factor is 

nb 
Lf = (I- E;sLqs = - = 

nb 
l SLk’ ~“(fR,O - to) 

(59) 

This solution is valid only for low values of the 
loading factor, because it assumes a parabolic 
isotherm. Actual isotherms will deviate rapidly 
from this assumption when the concentration 
increases. The range of validity of the solution 
depends also on the column efficiency. The 
results are excellent when bC, Q 0.05, where CM 
is the maximum concentration of the band pro- 
file. The solution can still be used for bC, d 0.1, 
as the error made in the band width remains 
smaller than 5% [42]. At higher column loadings 
the error increases significantly, because the 
parabolic isotherm deviates more and more from 
the actual isotherm (i.e., a Langmuir isotherm) 
with increasing sample size. 

4.5. Numerical solution of the equilibrium- 
dispersive model of chromatography 

As in general there is no analytical solution of 
the equilibrium-dispersive model of chromatog- 
raphy, even in the single-component case, a 
numerical solution should be searched for. There 
are different approaches for obtaining such a 
numerical solution. The best method depends on 
the purpose of the calculation and the computer 
means available. 

4.5.1. Orthogonal collocation method 
The method of orthogonal collocation on finite 

elements [43,44] is one of the best methods to 
solve a set of partial differential equations such 
as eqn. 45, under the proper initial and boundary 
conditions and using the competitive equilibrium 
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isotherms. However, collocation methods have 
been developed for the solution of problems in 
the three-dimensional space, with complex 
geometries. In the case of a chromatographic 
column (one-dimensional space), these methods 
require long calculation time and it is difficult to 
adjust properly the parameters to obtain a stable 
numerical solution, as the conditions required 
have not been well defined. Nevertheless, sever- 
al groups have derived the necessary computer 
programs and published profiles calculated by 
these methods. 

4.5.2. Finite difference methods 
The classical alternative approach for the solu- 
tion of the set of eqns. 45 is the use of a finite 
difference method. Eqns. 45 can be rewritten as 

g+{ “k’“d:,)l}_ Da_ a*c ((.&)) 

U at* 

By letting llu(C + Fq) be G in eqn. 60, one 
obtains a simplified but equivalent equation: 

ac aG(C) D, a*c 
az+at=-‘-- U at* (61) 

In the finite difference method of solution of 
partial differential equations, each partial dif- 
ferential term is replaced by a forward, a back- 
ward or a central finite difference term. There 
are a large number of possible combinations for 
replacing the partial differential terms in eqn. 61 
with various kinds and combinations of finite 
difference terms. However, the number of 
choices can be reduced dramatically by consider- 
ing the facts that (i) the solution should be stable 
and (ii) the error term should be of second order 
with respect to the space and time increments, in 
order for the truncation or numerical error to be 
small enough and have a negligible influence on 
the solution. For example, if we use a central 
finite difference for the first term on the right- 
hand side of eqn. 61 and for the term on the 
left-hand side, and a backward finite difference 
term for the second term on the right-hand side, 
the following finite difference equation is ob- 
tained: 

cl+1 - Ci,_l + G',+' -G; 

2h 7 

D C;+, =a. - 2c’, - CL_, 

U h* 
(62) 

where the subscript and n correspond to the 
space increments (h) and the superscripts and i 
to the time increments (7). The error analysis of 
this calculation procedure shows that the error in 
this scheme is of the order of O(r + h*). Thus, 
the scheme introduces an error equivalent to a 
first-order partial differential term. Therefore, 
this procedure cannot be used, unless a very 
small value of the time increment, r, can be 
selected. This would make the calculation too 
long. In linear chromatography an error of this 
type can be cancelled by adding an extra term 
exactly equivalent to the amount of the trunca- 
tion error, but of opposite sign. This has been 
done by Lax and Wendroff [45]. The Lax and 
Wendroff scheme can be written as 

cl+1 - Ci,_, + G',+' - G', 

2h 7 

C;+l - ZCi, - CL_, 
= 

h* 
(63) 

Although this scheme gives an accurate solution 
in linear chromatography, it does not provide a 
very important contribution to the solution of 
this problem because we have an analytical 
solution for the equilibrium-dispersive model in 
linear chromatography. Eqn. 63 has been used 
by Lin and Guiochon [46] for the calculation of 
band profiles in non-linear chromatography. 
Serious difficulties are encountered in the choice 
of the integration increments to obtain a stable 
solution. Further, in non-linear chromatography, 
the truncation error is different from r~,,~/2, and 
it is impossible to calculate it accurately. There- 
fore, the use of eqn. 63 introduces some error in 
non-linear chromatography, and we obtain only 
an approximate solution. The importance of the 
error is difficult to estimate exactly. 

4.5.3. Replacing the axial dispersion term by a 
numerical dispersion 

An alternative approach for writing a finite 
difference scheme of numerical integration of 
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eqns. 45 consists in ignoring the axial dispersion 
term in these equations and in compensating for 
it by adding a numerical dispersion. By ignoring 
the axial dispersion term, eqns. 45 become a 
first-order partial differential equation: 

ac az+ WC) _. 
at (W 

The advantage of using eqn. 64 is that as it is a 
first-order partial differential equation, the 
stability condition and the error analysis are 
simple, at least with a linear isotherm. By 
replacing the partial difference terms in eqn. 64 
with finite difference terms we make a numerical 
truncation error. This error can be analyzed and 
determined if we assume a linear isotherm. For a 
linear isotherm, by choosing the proper time and 
space increment, we can make the first-order 
numerical error exactly equal to the neglected 
axial dispersion term in eqn. 61 which has been 
ignored in eqn. 64. On the other hand, the error 
analysis is very difficult in non-linear chromatog- 
raphy. There are three possible schemes for this 
approach: 

(i) The forward-backward differences [11,47, 
481: 

ci,,, = C;+;(G;-G;-l) (65) 

This numerical procedure has been found very 
attractive because of the fast execution by 
modem computers [48]. 

(ii) The backward-forward differences [48]: 

G in+’ = G’, _;(Cl, - CL_,) 

With this scheme, the concentration of the 
component at the new time position must be 
calculated from G = C + Fq, which requires an 
iteration procedure. This scheme is identical to 
the Craig model if we chose the time and space 
increments such that h/r = u. 

(iii) The forward-backward,, + 1 differences 
[49]: 

With this scheme, the concentration, C, of the 
solute at the new space position must be calcu- 
lated from C + (hITu)(C + Fq), which requires 
an iteration procedure. 

Two types of problems are encountered when 
using this approach. First, it is impossible to 
determine the exact contribution of the numeri- 
cal error in non-linear chromatography. We use 
the same condition as obtained in linear chroma- 
tography. This is an approximation, but a fairly 
good one, as the calculated band profiles are in 
excellent agreement with the experimental data. 
Second, we can choose only one value of the 
time and space increments for multi-component 
systems. The values of these increments can be 
determined only by equating the numerical dis- 
persion coefficient with the axial dispersion co- 
efficient for one of the components, or with the 
average axial dispersion coefficient of the mix- 
ture. This constitutes the second source of error 
in this approach. Its importance depends on the 
scheme selected and on the composition of the 
binary mixture studied. 

The main advantages of this original approach 
for the calculation of numerical solutions of the 
equilibrium-dispersive model is that by using the 
proper time and space increments it is possible to 
obtain a stable solution and the calculation time 
is much shorter than with either of the other 
approaches. This advantage is of particular value 
for the first scheme (forward-backward differ- 
ence) . 

4.4. Practical value of the equilibrium-dkspersive 
model 

Numerical calculation of solutions of the 
equilibrium-dispersive model in linear chroma- 
tography presents no difficulties, either theoret- 
ical or practical. When the model is applied to 
non-linear chromatography, a number of prob- 
lems have to be solved. 

From the fundamental viewpoint, the only 
serious difficulty is that we have shown that it is 
certainly impossible to obtain an exact solution 
of the equilibrium-dispersive model, because D, 
is concentration dependent. On the other hand, 
in order to obtain easily a numerical solution of 
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this model, it is necessary to assume that D, is 
independent of the concentration. If we assume 
that D, is constant, however, we still obtain 
solutions that are satisfactory in practice, 
because the variation of D, is not very important 
in the concentration range used in chromatog- 
raphy and the influence of D, on the band profile 
is small compared with the determining influence 
of thermodynamics. 

From a more practical viewpoint, the selection 
of a calculation method, we can use methods 
based on collocation one finite elements. These 
methods give satisfactory results but are slow 
and require significant amounts of CPU time. If 
we apply the Lax-Wendroff approach to a prob- 
lem of non-linear chromatography, a source of 
error appears, because the truncation error in 
the non-linear case cannot be calculated, and we 
have to assume it to be the same as in the linear 
case. This method should be rejected for its lack 
of numerical stability. 

If we apply the third approach, ignoring the 
axial dispersion term and compensating for it by 
the proper amount of numerical error, we find 
two main sources of error. First, the truncation 
error in the non-linear case cannot be calculated, 
and we have to assume that it is the same as in 
the linear case. Second, as the apparent disper- 
sion term is compensated for by the numerical 
dispersion term, the calculation can be made 
with only one value of the apparent dispersion 
coefficient. In spite of these approximations, 
however, the calculated band profiles are very 
close to the experimental band profiles, because 
at low concentrations the effect of the axial 
dispersion is accounted for accurately, whereas 
at high concentrations the effect of the axial 
dispersion becomes small compared with the 
influence of the thermodynamics on these pro- 
files. 

5. COMPARISON OF CALCULATED BAND 

PROFILES AND EXPERIMENTAL RESULTS 

In order to calculate the experimental band 
profiles, we need the following experimental 
conditions: adsorption isotherm; sample size; 
mobile phase flow-rate; column dimensions; 

column hold-up time; and HETP under linear 
conditions. The column HETP can be obtained 
easily by injecting a very small amount of sample 
and measuring the band width. It is a function of 
the mobile phase velocity. The column dimen- 
sions, mobile phase velocity, hold-up volume 
and sample size are easily measured. 

However, the band profile under overloaded 
conditions is very sensitive to the adsorption 
isotherm. These equilibrium isotherms have to 
be measured accurately in order to achieve good 
agreement between theoretical and experimental 
profiles. This is often what limits the usefulness 
of a model that could otherwise permit accurate 
band profile prediction. Too little is known yet 
about competitive isotherms. 

5.1. Calculated and experimental band profiles 
in the case of single-component bands 

We compare in Figs. 4 and 5 [37] experimental 
band profiles (symbols) with the results of calcu- 
lations for normal- and reversed-phase chroma- 
tography (solid lines). Fig. 4 corresponds to 
acetophenone on a silica column eluted with 
n-hexane-ethyl acetate (97.525). Fig. 5 corre- 
sponds to phenol on a C,, chemically bonded 
silica column eluted with methanol-water 
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Fig. 4. Comparison of the calculated (solid lines) and the 
experimental (symbols) band profiles of acetophenone on 
silica. Mobile phase: ethyl acetate-n-hexane (2.5:97.5). L = 
25 cm; d = 4.6 mm; F, = 2 mllmin; N = 5000. Sample sizes: 
1 = 0.025; 2 = 0.05; 3 = 0.075; 4 = 0.1; 5 = 0.125 mmol. From 
ref. 37 (0 American Chemical Society). 
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Fig. 5. Comparison of the calculated (solid line) and ex- 
perimental (symbols) band profiles of phenol on octadecyl 
chemically bonded silica. Mobile phase: methanol-water 
(2O:gO). L = 25 cm; d = 4.6 mm; F, = 1 mllmin; N = 5000. 
Sample sixes: 1=0.015; 2=0.03; 3=0.045; 4=0.06; 5= 
0.075 mmol. From ref. 37 (0 American Chemical Society). 

(20:80). In both instances there is very good 
agreement between theory and experiments. 
However, it must be emphasized that in each 
instance the isotherm was measured with the 
same column as used for the determination of 
the overloaded band profiles and fitted to a 
Langmuir isotherm. The use of the ECP method 
should be avoided in the comparison between 
experimental and calculated band profiles, as it is 
easy to fall into a circular argument. For practi- 
cal applications, however, the ECP method often 
provides excellent adsorption data. 

In the previous cases, the experimental data 
obtained in the determination of the single-com- 
ponent isotherms were fitted correctly to the 
Langmuir equation (eqn. 51). In the case of the 
results shown in Fig. 6, a biLangmuir isotherm 
was needed. For enantiomers on chiral selective 
stationary phases, a minimum of two different 
types of sites exist on the surface. One type of 
sites is enantioselective whereas the other is not 
[29]. For mandelic acid on immobilized bovine 
serum albumin (BSA), the use of a biLangmuir 
isotherm permitted the achievement of excellent 
simulations of the experimental bands. 

We compare in Fig. 7 experimental and calcu- 
lated band profiles for dodecylbenzene on 
graphitized carbon [50,51]. The behavior of 
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Fig. 6. Comparison of the calculated (solid line) and ex- 
perimental (symbols) band profiles of N-benxoyl-L-phenylal- 
anine on a Resolvosil-BSA-7 column. Mobile phase: 0.1 M 
aqueous phosphate buffer solution (pH 6.8) with containing 
7% (v/v) of 1-propanol. L = 15 cm; d = 4 mm; FV = 1 ml/ 
min; N=700. Sample size: 1=0.494; 2=0.989; 3= 1.48 
pmol. BiLangmuir isotherm: selective site a, = 20.1, q,,l = 
0.009556 molll; non-selective site, a, = 7.09, q,.* = 0.217 
molll. From ref. 29 (0 American Institute of Chemical 
Engineers). 

time’ymin) 
12 

Fig. 7. Comparison of the calculated (solid lines) and ex- 
perimental (symbols) elution profiles of phenyldodecane for 
different masses injected [49]. Isotherm model in eqn. 68. 
Experimental conditions: column packed with graphitixed 
carbon, L = 15 cm, I.D. ~0.46 cm; mobile phase, acetoni- 
trile; temperature, 50°C; mobile phase flow-rate, 1 ml/min; 
sample concentration, 67 mM. Sample volumes: 1 = 5; 2 = 
10; 3=20; 4=50; 5= 100; 6= 180 ~1. From ref. 51 (0 
American Chemical Society). 
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carbon as an adsorbent in liquid chromatography 
is very different from that of silica and chemical- 
ly bonded silica. It presents a strong aflinity for 
alkyl chains and contains a certain amount of 
high-energy sites selective of these chains. Fur- 
ther, adsorbate-adsorbate interactions are espe- 
cially strong between alkyl chains sorbed on 
graphitized carbon, on the surface of which they 
lie flat and parallel. The result is an adsorption 
isotherm that is convex downwards. The two 
phenomena combine to give a composite ad- 
sorption isotherm with the equation 

4s,lWl+ 2W) %.2W 
4= l+b,c+b,cZ +1+&C (68) 

Adsorption data and band profiles are in excel- 
lent agreement with the model and the results of 
calculation performed with the model. 

5.2. Comparison of calculated band profiles 
with experimental results in the case of multi- 
component bands 

A new difficulty arises when we try to compare 
experimental and calculated band profiles. With 
multi-component systems, and when the column 
is overloaded to the extent that the bands of the 
two components of the binary mixture overlap, 
the direct determination of the individual band 
profiles from the detector response is not pos- 
sible in general. It is exceptional that two com- 
pounds whose interference on a column is not 
accidental have UV spectra that are different 
enough to permit the accurate detection of one 
of them in the presence of the other. In the few 
reported cases where the band profile of a 
component is determined from the detector 
response on a frequency where the other does 
not absorb, the separation was purely academic. 
In order to determine the individual profiles, 
fractions must be collected at sufficiently close 
intervals and analyzed in order to find the 
composition of the eluent as a function of time 
[29,52]. 

We note that, unless the detector has the same 
response factor for the two components, it is also 
not possible to determine the total concentration 
profile from the chromatogram. When the detec- 

tor response is not linear, the deconvolution of 
the detector response is a complex problem. A 
notable and useful exception is enantiomers for 
which the detector usually provides the total 
concentration profile by simple calibration with 
the racemic mixture or one of the enantiomers. 

The competitive isotherms are necessary for 
the calculation of the individual band profiles. 
Whereas in the single-component case the Lang- 
muir model is often a reasonable first approxi- 
mation, the competitive isotherms rarely follow 
the competitive Langmuir isotherm model. The 
only exception that we have found concerns 
enantiomers on immobilized BSA. The reason 
for this success of the Langmuir model stems 
from the characteristics of the retention mecha- 
nisms involved. We have two very similar com- 
ponents, which behave in identical ways for 
anything but the enantioselective mechanism. 
This mechanism involves the adsorption of the 
molecules in a pouch of the BSA molecule, thus 
effectively shielding them, and avoiding any 
adsorbate-adsorbate interactions. For this mech- 
anism, the, column saturation capacities of the 
two components are identical, so the Langmuir 
model is thermodynamically sound. Further, the 
common column saturation capacity for the 
active sites is low. Thus, the column becomes 
overloaded with small sample amounts. Because 
adsorption needs be measured in a low range of 
concentrations, the liquid and adsorbed phases 
are close to ideal, and the conditions required 
for the validity of the Langmuir isotherm are 
nearly fulfilled. As a result, in most instances of 
separation of optical isomers we have studied so 
far, the band profiles of the enantiomers are well 
accounted for by using a bilangmuir competitive 
isotherm model, whose parameters are those 
obtained by single-component isotherm measure- 
ment [24,53]. 

We show in Figs. 8-10 a series of experimental 
band profiles and the profiles calculated using 
a backward-forward finite difference scheme 
(eqn. 66). The components studied were N-ben- 
ZOyl-D- and -L-alanine [53]. The single-compo- 
nent isotherms of each of these optical isomers 
was measured on the same column. These ex- 
perimental data were well fitted by a bilangmuir 
isotherm. A bilangmuir competitive isotherm 
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Fig. 8. Comparison of the calculated (solid line) and ex- 
perimental (symbols) individual band profiles for a racemic 
mixture of N-benzoyl+ (0) and -D-phenylalanine (0) on a 
Resolvosil-BSA-7 column. Conditions as in Fig. 7, except the 
mobile phase was a 10 mM aqueous phosphate buffer 
solution (pH 6.7) containing 3% (v/v) of I-propanol. Sam- 
ples sizes: 0.26 pmol for each isomer. Binary competitive 
Langmuir isotherm: selective site, al,L = 14.16, a = 35.09, 
4r.l.L = 0.0019 mol/l, 4,,1.D = 0.0020 molll; non-se&ive site, 
a2 = 4.41, qs,* = 0.01995 molll. From ref. 53 (0 the 
American Chemical Society). 
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Fig. 9. Same comparison as in Fig. 8, except 1:3 mixture; 
sample size, 0.105 km01 of L- and 0.392 pm01 of D-isomer. 
From ref. 53 (0 American Chemical Society). 
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Fig. 10. Same comparison as in Fig. 8, except 3:l mixture; 
sample size, 0.491 pm01 of L- and 0.165 pmol of D-isomer. 
From ref. 53 (0 American Chemical Society). 

using these coefficients was used for the calcula- 
tion of the band profiles. In all three figures, the 
solid lines represent the results of calculations 
and the symbols (circles for the L-isomer, 
squares for the D-isomer) are the experimental 
data. There is a very good agreement in all 
instances between the calculated and experimen- 
tal profiles. Fig. 8 compares the bands of the two 
enantiomers for a racemic mixture. The displace- 
ment and the tag-along effects can be seen in 
these bands. Fig. 9 compares the bands of the 
isomers in a 1:3 mixture. As predicted by theory, 
the intensity of the displacement of the first 
component by the second increases with increas- 
ing relative concentration of the second com- 
ponent (compare Figs. 8 and 9). Fig. 10 com- 
pares the bands of the two isomers in a 3:l 
mixture. As predicted by theory, the intensity of 
the tag-along effects increases with increasing 
ratio of the concentrations of the first and second 
components. 

Finally, we show in Fig. 11 a comparison 
between experimental and calculated profiles for 
2-phenylethanol and 3-phenylpropanol [54]. The 
single-component isotherms follow the Langmuir 
model, but the competitive isotherms are not 
well accounted for by the competitive Langmuir 
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Fig. 11. Comparison of the profiles calculated with the 
forward-backward difference (eqn. 65), using the actual 
injection profile (solid lines) and a rectangular pulse injection 
(dashed line), and the experimental (symbols) elution profiles 
of a mixture of 2-phenylethanol and 3-phenylpropanol. 
Experimental conditions: column, 25 cm x 0.46 cm I.D., 
packed with IO-pm Vydac C,,; mobile phase, methanol- 
water; flow-rate, 1 mllmin. Sample sizes: 10 + 10 mg (L, = 7 
and 7%); (b) 7 + 21 mg (L, = 5 and 15%); (c) 30 + 10 mg 
(L, = 21 and 7%). From ref. 54. 

model. The band profiles predicted are in 
reasonable agreement with the experimental 
profiles, but significant, systematic differences 
are obvious. This illustrates the need for a good 
competitive isotherm model for the accurate 
prediction of band profiles. 

6. CONCLUSIONS 

The ideal model gives an excellent idea of the 
phenomena that take place during a chromato- 
graphic separation. The understanding of the 
chromatograms derived from the ideal model 
provides a profound insight into what is happen- 
ing during the progressive disentanglement of 
the component bands. Particularly among sci- 
entists coming to preparative chromatography 
from the field of analytical chemistry, the didac- 
tic value of the ideal model cannot be overesti- 
mated. 

In all cases of practical importance in prepara- 
tive chromatography, the equilibrium-dispersive 
model offers an accurate and rapid procedure for 
calculating the individual band profiles, provided 
that the equilibrium isotherms are available. This 
is because materials scientists have succeeded in 
manufacturing particles of stationary phases 
through which mass transfers proceed rapidly, 
and on the surface of which the kinetics of 
adsorption-desorption are fast. It is exceptional 
that a chromatographic separation has to be 
conducted with packing material giving a column 
with less than a few tens of theoretical plates. 
Then the production rate would be very poor. 
Excellent calculation procedures are available 
for this model, making easily accessible to 
chemical engineers the simulation of preparative 
chromatography. Further, as chromatogram 
simulation becomes easy, the computer optimi- 
zation of the design and operating parameters of 
a separation is now accessible. Using this ap- 
proach, we have been able recently to calculate 
the production rate and the recovery yield of a 
component at a given degree of purity, under a 
variety of simulated experimental conditions. 
The experimental data obtained independently 
agree to within 5-8% with the calculated values 
[S-57]. 
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